A cross coupled low phase noise oscillator using an output swing enhancement technique

نویسندگان

  • Mohammad Bagheri
  • Ahmad Ghanaatian
  • Adib Abrishamifar
  • Mahmoud Kamarei
چکیده

A new voltage controlled oscillator (VCO) in a 0.18 μm CMOS process is offered in this paper. This paper's argument is to provide an innovative approach to improve the phase noise which is one of the most controversial issues in VCOs. Contrary to most ideas that have been put forward to decrease phase noise which are based on higher current dissipation to increase output voltage swing, this new method offers better specifications with respect to traditional solutions. The presented circuit is capable of extra oscillation amplitude without increasing the current level, taking advantages of tail current elimination and topology optimization. Analysis of the presented peak voltage amplitude can verify the optimum performance of the proposed. Post-layout simulation results at 2.3 GHz with an offset frequency of 1 MHz and 3 MHz show a phase noise of about 125 dBc/Hz and 136.5 dBc/Hz, respectively, with the current of 1.3 mA from 1.8 V supply. Also, Monte Carlo simulation is used to ensure the sensitivity of the proposed circuit to process and frequency variations are very promising. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Phase Noise Reduction Technique in LC Cross-coupled Oscillators with Adjusting Transistors Operating Regions

In this paper, an intuitive analysis of a phase noise reduction technique is done, and then a modified structure is proposed to achieve higher phase noise reduction than the original one. This method reduces the impact of noise sources on the phase noise by decreasing closed-loop gain in zero-crossings points and moving this high closed-loop gain to the non-zero-crossings points. This reduction...

متن کامل

Differentially Driven Symmetric Microstrip Inductors

A differentially excited symmetric inductor that enhances inductor quality ( ) factor on silicon RF ICs is presented. Compared with an equivalent single-ended configuration, experimental data demonstrate that the differential inductor offers a 50% greater factor and a broader range of operating frequencies. Predictions from full-wave simulations and a physics-based SPICE-compatible model are va...

متن کامل

Design and Simulation of an X Band LC VCO

In this paper, a systematic method for the circuit parameters design of a monolithic LC Voltage Controlled Oscillator (VCO) is reported. The method is based on the negative resistance generation technique. As a result, a VCO has been designed in 0.18um CMOS technology using a conventional VCO structure to obtain the optimum values for the phase noise and power consumption. The simulation result...

متن کامل

A Temperature Compensation Voltage Controlled Oscillator Using a Complementary to Absolute Temperature Voltage Reference

This paper presents a temperature compensation voltage controlled oscillator (VCO) based on Cross-Coupled pair and Colpitts structures which is suitable for military fields. Also, two inductors have been used for increasing the negative conductance. By using this method, start-up condition has been improved. Two varactors and a simple capacitor bank are applied for covering a wide tunning range...

متن کامل

A Power-Efficient LC Quadrature VCO for RFID, Zigbee and Bluetooth Standards

A multi-band CMOS LC Quadrature Voltage Control Oscillator (QVCO) with minimum power consumption is developed to meet the phase noise and frequency band requirements of RFID, Zigbee and Bluetooth standards. To accomplish the multi-band receiving architecture at low power consumption, current switching technique with optimized cross-coupled transistor sizes has been used. A comprehensive analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Journal

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2014